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A B S T R A C T   

Integrated analysis has increasingly been the preferred approach for conducting stock assessments and providing 
the basis for management advice for fish and invertebrate stocks around the world. Many decisions are required 
when developing integrated stock assessments. For example, the analyst needs to decide whether the model fits 
the data, if the optimization was successful, if estimates are consistent retrospectively, and if the model is suitable 
to predict future stock responses to fishing. This study provides practical guidelines for implementing selected 
diagnostic tools that can assist analysts in identifying problems with model specifications and alternatives that 
can be explored to minimize or eliminate such problems. Emphasis is placed on reviewing the implementation 
and interpretation of contemporary model diagnostic tools. We first describe each diagnostic approach and its 
utility. We then proceed by providing a “cookbook recipe” on how to implement each of the diagnostics, together 
with an interpretation of the results, using two worked examples of integrated stock assessments with Stock 
Synthesis. Further, we provide a conceptual flow chart that lays out a generic process of model development and 
selection using the presented model diagnostics. Based on this, we propose the following four properties as 
objective criteria for evaluating the plausibility of a model: (1) model convergence, (2) fit to the data, (3) model 
consistency, and (4) prediction skill. It would greatly benefit the stock assessment community if the next gen
eration of stock assessment models could include the diagnostic tests presented in this study as a set of open 
source tools.   

1. Introduction 

Integrated analysis used for stock assessment combines several 
sources of data into a single model using a joint likelihood for the 

observed data (Fournier and Archibald, 1982; Maunder and Punt, 2013). 
For the assessment of exploited fish populations, these data may include 
records of landings, indices of abundance from research surveys, tagging 
data, and the composition of size classes and/or ages present in samples. 
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Several general stock assessment software packages for implementing 
integrated analysis have been widely used around the world (Dichmont 
et al., 2016), including CASAL (Bull et al., 2005), MULTIFAN-CL 
(Fournier et al., 1998) and Stock Synthesis (Methot and Wetzel, 2013; 
https://github.com/nmfs-stock-synthesis/stock-synthesis). 

Misspecification of key parameters or assumptions in integrated 
stock assessment models can strongly impact the estimates of quantities 
of management interest, such as stock depletion and biomass at 
maximum sustainable yield (Mangel et al., 2013). Model mis
specifications can include incorrect specifications of important biolog
ical parameters, such as somatic growth (Minte-Vera et al., 2017), 
maturation (Thorson et al., 2019), or natural mortality (Lee et al., 2011). 
Model misspecifications can also arise due to incorrect specifications of 
selectivity functions (Ichinokawa et al., 2014; Punt et al., 2014; Vasi
lakopoulos et al., 2020) and variance parameters (Francis, 2011; 
Truesdell et al., 2017), or by not accounting for spatial stock structure 
(Goethel et al., 2011; Punt, 2019) or temporal variation in recruitment 
(Thorson et al., 2019), selectivity (Stewart and Monnahan, 2017), or any 
of the above listed biological processes. Failing to account for an 
important process can also lead to conflicting information among data 
sets (Francis, 2011; Ichinokawa et al., 2014) and retrospective and 
forecast bias (Brooks and Legault, 2016; Carvalho et al., 2017; Miller 
and Legault, 2017). Current solutions to data conflict include elimi
nating one of the conflicting data sources or, nearly equivalently, 
reducing the contribution of one of the conflicting data sources to the 
likelihood (i.e., data-weighting) when fitting the model (Maunder and 
Piner, 2017; Wang and Maunder, 2017). However, these approaches 
deal with the symptoms rather than the underlying causes of data con
flicts (Wang et al., 2015) and leave intact model misspecifications that 
can affect estimates of management quantities. Thus, recognizing the 
source and impact of misspecified components is crucial for providing 
accurate advice to managers. 

Tools to diagnose poor fits to the data and determine which data 
sources are in conflict can be used as starting places to identify model 
misspecification. Several diagnostics have been evaluated for their 
utility to identify poor fits to data and data conflicts within integrated 
stock assessment models (Carvalho et al., 2017; Lee et al., 2014; 
Maunder and Piner, 2017; Punt et al., 2014). Such model diagnostics 
range from graphical visualization and basic goodness-of-fit statistics to 
computationally intense techniques that can involve iterative refitting 
and profiling. Carvalho et al. (2017) tested several new and existing 
diagnostics (i.e., residual analysis, retrospective analysis, likelihood 
component profiling, age-structured production models − ASPMs, and 
catch curve analysis − CCA). They found that no single diagnostic 
worked well in all the evaluated cases and recommended the use of a 
selection of diagnostics (i.e., a diagnostic toolbox) to increase the ability 
to detect model misspecification while acknowledging that the use of 
multiple diagnostics may increase the probability that a diagnostic test 
results in a false positive. 

Diagnostic tests are important in determining the robustness of es
timates for management advice in integrated stock assessment models. 
For example, Maunder et al. (2020) developed a risk-based framework 
that assigns weights to models in an ensemble of candidate models, 
which involved the results of several diagnostics tests. In some cases, a 
simple fix within the assessment process can improve model diagnostics; 
in other cases, dedicated research studies are necessary to improve 
models outside the operational process (Eero et al., 2015; ICES, 2019). 
Maunder and Piner (2017) proposed a procedure based on diagnostic 
tests to guide the construction of stock assessment models and reduce 
model misspecification evidenced by data conflicts. Their procedure for 
model construction consisted of two components: (1) avoiding, diag
nosing and fixing data conflicts, and (2) facilitating the interpretation of 
diagnostics results. Maunder and Piner (2017) also provided a flow chart 
to help users complete the various steps involved in model construction 
in an optimized sequence. 

This paper first reviews the most recent developments of model 

diagnostic tools with a focus on integrated stock assessment models. We 
then proceed by providing “cookbook recipes” on how the diagnostic 
tools can be implemented and interpreted. We illustrate our cookbook 
recipes based on two worked examples of integrated stock assessments 
with Stock Synthesis: (1) North Atlantic shortfin mako (Isurus oxy
rinchus) and (2) the Pacific hake (or Pacific whiting, Merluccius pro
ductus) off the west coast of the United States and Canada. Emphasis is 
placed on presenting a guide to produce graphics and supporting sta
tistics to enable wider use of important diagnostic techniques, such as 
the runs test for residual analysis (Carvalho et al., 2017), model vali
dation techniques using hindcast cross-validations (Kell et al., 2016), 
and deterministic ASPMs (Maunder and Piner, 2015). The model diag
nostic process and recommended steps are discussed, and a conceptual 
flow chart for model development is provided. Although the diagnostics 
are presented for Stock Synthesis models, they apply to integrated, 
age-structured statistical catch-at-age/size population models that use 
multiple datasets and a variety of model structures. 

2. Contemporary model diagnostic tools 

In this section, we provide an overview of several current model 
diagnostics and how the analyst can use them when developing a stock 
assessment by following a flow chart. The diagnostics are grouped into 
the following four categories: convergence, goodness-of-fit, model con
sistency, and prediction skill. 

Our process (Fig. 1) comprises a series of interconnected diagnostic 
tests that should be carried out to establish a base model (Carvalho et al., 
2017) or an ensemble of candidate models (Maunder et al., 2020). In 
general, the process flows from top to bottom and shows when a diag
nostic test is recommended (Fig. 1). The flow chart includes several 
’detour’ options to consider when model diagnostics do not show 
satisfactory results. In the process, we interpret a detour as a model 
exploration that might not necessarily lead to changes but typically in
cludes some additional analysis to help justify modelling decisions. 
Although it sometimes becomes apparent that the model needs to be 
altered while engaging in a detour, the goal should be to explore alter
native model formulations that could contribute to fixing the problems. 
We recognize that the model construction process varies depending on 
the analyst and the stock assessment, and thus, we sought to propose a 
flow chart that could work for the majority. 

2.1. Convergence 

There are several useful diagnostic checks for evaluating the 
convergence of a model, but when looked at in isolation, none of these 
convergence diagnostics alone may be sufficient to demonstrate 
convergence or the lack of it decisively. Therefore, model convergence 
should be assessed using several considerations. The first step is 
checking for parameters estimated at a bound, which can indicate 
problems with data or the assumed model structure. The second is 
checking that the final gradient (i.e., the terminal degree of descent of 
the objective function, which becomes lower or less steep, as the func
tion approaches a minimum) is relatively small (e.g., ≤ 1.00E-04). A 
small final gradient is not an absolute requirement as our experience is 
that successful model outcomes can be obtained despite larger final 
gradients. The third is to determine whether the Hessian (i.e., the matrix 
of second derivatives of the log-likelihood concerning the parameters, 
from which the asymptotic standard error of the parameter estimates is 
derived) is positive definite. Parameters on bounds or with abnormal 
variance or covariance can prevent positive definite Hessian attainment. 
Models that are far from converged may also not attain a positive defi
nite Hessian, but a positive definite Hessian is not, in itself, an indication 
of model convergence. Other convergence diagnostics include (i) 
examining the correlation matrix for highly correlated (e.g., > 0.95) 
parameter pairs; and (ii) examining parameters for excessively high 
variance as an indication that they do not influence the fit to the data. 
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Highly correlated parameters and uninformed parameters can 
contribute to solutions that are spurious and possibly numerically un
stable. In some instances, excessively high coefficients of variation (CVs) 
on estimated quantities (e.g., > 100 %) can indicate insufficiently 
informative input data to estimate time-varying processes (e.g., 
recruitment or selectivity), if model convergence can even be attained in 
such over-parameterized situations (Methot and Wetzel, 2013). 

Once individual model convergence has been established, ’jittering’ 
the parameters’ starting values and re-running the model is commonly 
used to evaluate whether the model has converged to a global solution 
rather than a local minimum. The primary check of jittering is to ensure 

that none of the randomly generated starting values of parameters re
sults in a solution that has a smaller total negative log-likelihood than 
the reference model. However, the absence of a local minimum when 
running jittering is not a guarantee that the model is not stuck in a local 
minimum (Subbey, 2018). The jitters’ magnitude should be done judi
ciously as extreme jitters could start the model search in an unrealistic 
place from which it cannot detect gradients pointing towards reasonable 
solutions. 

Fig. 1. Conceptual process flow chart illustrating a series of interconnected diagnostic tests recommended when developing a base model (or an ensemble of 
candidate models). The arrows represent broad guidance regarding the flow along the axis of diagnostic types from top to bottom. If diagnostic tests fail, a ‘detour’ 
path highlights the need for model exploration before advancing. 
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2.2. Goodness-of-fit 

Systematic misfit to data should be considered a sign of model mis
specification. Unacceptable model fits (i.e., model estimates which do 
not match the data) can be detected by either the magnitude of the re
siduals being larger than implied by the observation error or the pres
ence of trends in residuals (e.g., over time or age). 

Plotting residuals is a simple method to observe trends, patterns, and 
variations in data fit over time (e.g., bias, drift, skewness, heavy tails, 
correlation with states or driving inputs, and heteroscedasticity). 
Technically, a random distribution of residuals will fall below or above 
the median 50 % of the time. However, analysts are also interested in 
whether the probability of being on either side of the median varies with 
time. The presence of temporal autocorrelation in residuals is evident by 
systematic drifts in the residual mean throughout time. The Wald and 
Wolfowitz (1940) runs test is a nonparametric hypothesis test for 
randomness in a data sequence that calculates the 2-sided p-value to 
estimate the number of runs (i.e., sequences of values of the same sign) 
above and below a reference value. 

Another common goodness-of-fit statistic is the root mean square 
error (RMSE; Carvalho et al., 2017), which describes the standard de
viation of residuals, such that 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑

t

(

ŷt − yt

)2

n

√
√
√
√
√

(1)  

where ŷt is the predicted value at time step t, yt is the observed value, 
and n is the number of observations. The RMSE can be interpreted as the 
standard deviation of the unexplained variance, an analog to the stan
dard error. A relatively small RMSE (≤ 0.3) indicates a reasonably 
precise model fit to relative abundance indices (Winker et al., 2018). 
However, to interpret the RMSE correctly, it is important to consider the 
observation error assumptions, mainly whether the observation error is 
an estimable quantity (e.g., estimable with additional variance) or fixed 
a priori (Winker et al., 2018). For example, if an abundance index is 
thought to be associated with a large sampling error, a fixed coefficient 
of variation (CV) larger than 0.3 may be assigned to that index a priori 
(Francis et al., 2003). In such a case, a small RMSE may point either 
towards a misspecified variance assumption or an over-fitted model. In 
general, we argue that the RMSE is not suitable to judge the 
goodness-of-fit across different time series in integrated assessments and 
should not be used for model selection purposes in isolation. 

Winker et al. (2018) introduced a joint residual plot that in
corporates several of the above features: lognormal residuals of abun
dance indices color-coded by fleet with combined RMSE; boxplots 
indicating the median and quantiles of all residuals available for any 
given year, with the area of each box indicating the strength of the 
discrepancy between abundance index (larger boxes indicate a higher 
degree of conflicting information); and a loess smoother through all 
residuals, which highlights systematically auto-correlated residual pat
terns. Here, we extended the implementation of this joint residual plot to 
the mean-length and mean-age residuals derived from observed and 
expected length- and age-composition data, respectively (Francis, 
2011). 

Similarly, the runs test can diagnose model misspecification using 
residuals from fits to abundance indices. It can also be applied to other 
data components in assessment models such as the mean-length re
siduals and mean-age residuals. In addition to the runs test, it is also 
recommended to look for patterns in residuals that may indicate the 
presence of non-random variation, for example, serially correlated re
siduals causing a systemic residual pattern (Punt et al., 2014) or obvious 
outliers. To objectively detect outliers, the three-sigma limit can be used 
to identify if any data point would be unlikely given a random process 
error in the observed residual distribution if it is further than three 
standard deviations away from the expected residual process average of 

zero (see details in Anhøj and Olesen, 2014). 

2.3. Model consistency 

2.3.1. Information sources and structure 
A key model diagnostic developed to identify the influence of in

formation sources on model estimates is the likelihood component 
profile (Ichinokawa et al., 2014; Lee et al., 2014; Wang et al., 2014). This 
diagnostic reports the likelihood over each data component across a 
particular parameter profile. The equilibrium recruitment parameter, 
R0, is commonly profiled because it represents an ideal global scaling 
parameter given that unfished (virgin) recruitment is proportional to 
unfished biomass (Lee et al., 2014; Maunder and Piner, 2015; Wang 
et al., 2014). A profile of R0 is conducted by sequentially fixing R0 to a 
range of values and then examining the change in the total and 
data-component likelihoods. A relatively large change in negative 
log-likelihood units along the profile suggests a relatively informative 
data source for that particular model. Also, a difference in the location of 
the minimum negative log-likelihood along the profile between data 
sources might suggest either conflict in the data or model mis
specification (or both). Profiling other scaling parameters (e.g., current 
biomass) or derived quantities should also be considered (Maunder and 
Starr, 2001). 

The application of an Age-Structured Production Model (ASPM) 
diagnostic can detect misspecification of key systems-modeled processes 
that control the shape of the production function (Carvalho et al., 2017). 
This diagnostic evaluates whether the net effect between surplus pro
duction and observed catches alone could explain trends in the index of 
abundance versus a more complex model that uses annual deviations in 
recruitment to improve the fit to trends in the data. In the absence of 
information from length- or age-composition data (i.e., likelihood 
weighting of zero), all selectivity parameters in the ASPM are fixed to 
the estimated values from the fully integrated model (for further details, 
see section 3.2.2 ASPM Diagnostic). Maunder and Piner (2017) suggest 
that if the ASPM fits well to the indices of abundance that have good 
contrast (i.e., those that have declining as well as increasing trends), the 
production function is likely to drive the stock dynamics and the indices 
will provide information about absolute abundance (Minte-Vera et al., 
2017). On the other hand, if there is not a good fit to the indices, then the 
catch data and the production function alone cannot explain the tra
jectories depicted in the indices of relative abundance. This can have 
several causes: the stock is recruitment-driven; the stock has not yet 
declined to the point at which catch is a major factor influencing 
abundance; the base-case model is misspecified because complex dy
namics such as stock structure are being ignored, and thus, the signal in 
catches is lost; and the indices of relative abundance are not propor
tional to abundance. The ASPMdev is a variation of the ASPM diagnostic 
and designed to evaluate if composition data is needed to estimate the 
variability in recruitment (Minte-Vera et al., 2017). It involves fitting to 
indices of abundance while simultaneously estimating recruitment de
viates in the absence of the composition data. Suppose the ASPMdev 
produces results substantially different from the fully integrated model 
and the ASPM. This would indicate that the composition data provide 
the primary source of information for estimating recruitment deviations. 

2.3.2. Retrospective analysis 
Retrospective analysis (Brooks and Legault, 2016; Carvalho et al., 

2017; Hurtado-Ferro et al., 2015; Miller and Legault, 2017) is commonly 
used to check the consistency of model estimates, i.e., the invariance in 
spawning stock biomass (SSB) and fishing mortality (F) as the model is 
updated with new data in retrospect. The retrospective analysis involves 
sequentially removing observations from the terminal year (i.e., peels), 
fitting the model to the truncated series, and then comparing the relative 
difference between model estimates from the full-time series with the 
truncated time-series. The retrospective analysis focuses on the bias and 
accuracy of modeled quantities. The most commonly used statistic for 
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retrospective bias, rho (ρM), is obtained from Mohn (1999). In line with 
recent studies (Carvalho et al., 2017; Winker et al., 2018), we focus on 
the formulation proposed by Hurtado-Ferro et al. (2015) as mean rela
tive error, of the form 

ρM =
1
h
∑h

t=1

(
XT− t − X̂T− t

X̂ T− t

)

(2)  

where X is the quantity for which ρM is being calculated, X̂ is the cor
responding estimate from the reference model that was fitted to the full 
dataset, T is the terminal year of the assessment, and h denotes the total 
number of time steps of sequentially removing years with data (hereafter 
referred to as retrospective peels). While it is straightforward to compare 
ρM among alternative model runs, deciding whether ρM of the ’best’ 
model is acceptable or not, is subjective. A ’rule of thumb’, proposed by 
Hurtado-Ferro et al. (2015), suggests values of ρM that fall outside 
(-0.15 to 0.20) for SSB for longer-lived species, or outside (-0.22 to 0.30) 
for shorter-lived species indicates an undesirable retrospective pattern. 
In addition, the direction of the retrospective bias has implications for 
characterizing risk associated with management advice. A positive ρM 
for SSB is of particular concern because it implies a systemic over
estimation of biomass, which would lead to over-optimistic quota advice 
if not taken into consideration (Hurtado-Ferro et al., 2015). 

2.4. Prediction skill 

The model diagnostics introduced thus far evaluate how well the 
model fits all available observations and how consistent the modeled 
quantities are in retrospect. However, providing fisheries management 
advice requires predicting a stock’s response to management and 
checking that predictions are consistent with future reality (Kell et al., 
2016). The accuracy and precision of the predictions depend on the 
validity of the model, the information in the data, and how far ahead of 
time predictions are made. 

An intuitive approach to assess potential forecast bias is to extend the 
retrospective analysis to conduct model-based hindcasts by adding the 
additional step of projecting quantities, such as SSB, over the truncated 
years (Brooks and Legault, 2016). The settings for these retrospective 
forecasts should be similar to the forecast settings used when conducting 
future projections, e.g., for alternative catch quota, only that the 
observed catches are used for the hindcast (Brooks and Legault, 2016). 
In age-structured integrated assessment models forecasts are typically 
forward-projections of the numbers- and catch-at-age matrices given 
assumptions about the expected recruitment (e.g., deterministic or 
short-term average) and other parameters that determine stock pro
ductivity and selectivity (Maunder et al., 2006; Johnson et al., 2016). 
The hindcast can estimate forecast bias by comparing the forecasted 
values to the reference model estimates (i.e., the assessment model that 
has zero peels) based on the most recent year. Forecast bias ρF can be 
computed as the average relative error analogous to the retrospective 
bias ρM (c.f. Eq. 2) and provides a measure of consistency with regards to 
updating the stock status estimates based on new data. 

Retrospective forecasting is not suitable for validation, however, 
unless model estimates of latent quantities, such as SSB, could be known 
without error. To address this, Kell et al. (2016) proposed the hind
casting cross-validation technique (HCXval) where observations are 
compared to their predicted future values. The key concept behind the 
HCXval approach is ’prediction skill’, which is defined as any measure of 
the accuracy of a forecasted value (ỹt) to the actual observed value 

(
yt
)

that is not known by the model (Kell et al., 2021). The difference ̃yt − yt 

is hereafter referred to as the ’prediction residual’ (Michaelsen, 1987). 
The HCXval algorithm is similar to that used in the retrospective anal
ysis. It requires the same procedure of peeling the observations and 
refitting the model to the truncated data series. Like retrospective 
forecasting, HCXval involves the additional steps of projecting forward 

(hindcasts). The difference is cross-validating the forecasts using the 
observations that were left out of the fit to the truncated time series in 
order to assess the model’s prediction skill. 

A robust statistic for evaluating prediction skill is the mean absolute 
scaled error (MASE; Hyndman and Koehler, 2006). MASE builds on the 
principle of evaluating the prediction skill of a model relative to a naïve 
baseline prediction. A prediction is said to have ’skill’ if it improves the 
model forecast compared to the baseline. A widely used baseline forecast 
for time series is the ’persistence algorithm’ that takes the observation at 
the previous time step to predict the expected outcome at the next time 
step as a random walk of naïve in-sample predictions yt = yt− 1, e.g., 
tomorrow’s weather will be the same as today’s. The MASE score scales 
the mean absolute error (MAE) of forecasts (i.e., prediction residuals) to 
MAE of a naïve in-sample prediction, such that: 

MASE =

1
h

∑T

t=T − h+1
(̃yt − yt)

1
h

∑T

t=T − h+1
|yt − yt− 1|

(3)  

where ỹt is the one-step-ahead forecast of the expected value for the 
observation at time t based on the model conditioned with data up to 
time t-1, and h denotes the number of hindcasting time steps for which 
forecasts ỹt were made to compare with the observations yt . A MASE 
score > 1 indicates that the average model forecasts are worse than a 
random walk. Conversely, a MASE score of 0.5 indicates that the model 
forecasts twice as accurately as a naïve baseline prediction; thus, the 
model has prediction skill. 

To generate the MASE score for abundance indices, the predicted 
abundance index is calculated as the product of the fleet-specific 
vulnerable biomass trajectories and the estimated catchability co
efficients q for the full model and for each of the reduced retrospective 
fits, including both observation and forecast time horizons. The pre
diction residuals are computed as the difference between the forecasts of 
log(yt) for each retrospective model and the corresponding observation 
that was reserved for validation by omitting it from the fit. The MASE 
score can then be calculated for each index by scaling the MAE of the 
prediction residuals to the MAE of the baseline forecasts of log(yt-1) 
observations from the previous time step over the evaluation period. The 
above procedure can be applied to any observed or empirical quantity 
for which the expected value can be forecasted. In section 3.3. Prediction 
skill: Hindcast Cross-validation we demonstrate how HCxval can be 
applied to indices (Kell et al., 2021) and also composition data based on 
prediction residuals of mean length- and age values. 

3. Diagnostic cookbook and interpretation 

In the following, we demonstrate the application of the above model 
diagnostics using outputs from two Stock Synthesis models. We chose 
Stock Synthesis for the integrated assessment modelling framework 
because it is widely used to perform assessments for fish stocks 
throughout the world. While Stock Synthesis was originally designed to 
fill the data moderate gap between biomass dynamic models on one side 
and Virtual Population Analysis (VPAs) and Statistical Catch-at-Age 
(SCAA) models on the other side, it now captures the entire spectrum 
from data-poor catch-only assessments (Cope, 2013; Wetzel and Punt, 
2015) to data-rich situations with available age composition and 
abundance indices from multiple sources including research surveys. In 
particular, its use within its original realm of data-moderate stock as
sessments (where catch time series and abundance indices are available 
and catch composition data is limited or absent) has significantly 
increased in recent years, especially in tuna Regional Fishery Manage
ment Organizations (RFMOs). Various stocks of billfish and pelagic 
sharks that were exclusively assessed using Surplus Production Models 
and VPAs are now moving towards implementation in Stock Synthesis as 
additional data become available (e.g., Courtney et al., 2017; Wang 
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et al., 2015). Similarly, there has been a recent increase in the use of 
Stock Synthesis for benchmark assessments in Europe in place of the 
conventionally used VPA with extended survivor analysis or the 
state-space catch-at-age models such as SAM (ICES, 2019). 

The visualization of model outputs and implementation of di
agnostics for Stock Synthesis is facilitated by the R package r4ss (Taylor 
et al., 2021; github.com/r4ss/r4ss). For each technique, we point 
readers to relevant citations or source code. To enable Stock Synthesis 
users to reproduce the diagnostic plots presented here, we have imple
mented several functions in the new R package ss3diags, which is made 
available on github.com/JABBAmodel/ss3diags. 

The first case study is based on the stock assessment for the North 
Atlantic shortfin mako shark (SMA; Courtney et al., 2020, 2017). The 
vast majority of SMA is caught by pelagic longline operations, but due to 
strong spatial structuring of size classes, the selectivity pattern differs 
among the fishing fleets operating in the different regions (Courtney 
et al., 2017). The population dynamics of SMA reveal an unusual com
bination of slow somatic growth, very late maturation, and steep 
dome-shaped selectivity. Fishing mortality predominantly occurs on 
sub-adults, whereas fishing mortality is expected to be low for larger 
adults, in particular for large, mature females (Winker et al., 2020). The 
SMA example represents a length-based age- and sex-structured mul
ti-fleet model that is fit to five standardized catch-per-unit-effort (CPUE) 
indices. Fisheries-dependent length-composition data are assumed to be 
representative of the different selectivity patterns for the six major 
surface longline fishing fleets (Fig. 2). The lack of fisheries-independent 
abundance information and the absence of age-composition data are 
also typical characteristics of data availability for pelagic shark and tuna 
stocks. 

The second case study is the most recent 2020 stock assessment of 
Pacific hake (HAKE; Grandin et al., 2020). The available data comprise a 
time series of total catches aggregated into a single fleet over the 
modeled period 1966–2019, an index of relative abundance and 
age-composition data from an acoustic biomass survey conducted over 

1995–2019, age-composition data from the fishery for all years between 
1975–2019, and weight-at-age and fecundity-at-age data are aggregated 
across all data sources. Prior to the start of industrial fishing operations 
in 1966, catches are assumed to be very small and thus not included in 
the model. Acoustic surveys were conducted once every three years over 
1995–2001 and once every two years over 2001–2019, with an addi
tional survey conducted in 2012. Empirical weight-at-age and 
fecundity-at-age data allow for time-varying growth without estimating 
time-varying parameters. Pacific hake appears to have low recruitment 
with occasional large recruitment events associated with high recruit
ment variability. The HAKE model represents an age-based, sex-ag
gregated integrated assessment built on information comparable to the 
‘data-rich’ requirements of a conventional statistical catch-at-age model. 
Model features include estimating age-specific time-varying fisheries 
selectivity implemented as a random walk, year-specific ageing error, 
and Dirichlet-Multinomial weighting of age-composition data (Thorson 
et al., 2017). 

3.1. Goodness-of-fit 

To evaluate the overall model fit of the relative abundance indices 
and composition data, the joint-index residual plot was applied to the 
residuals from the fits to indices, mean length for SMA, and mean age for 
HAKE for multiple time series simultaneously. The code for this diag
nostic plot was adapted from the JABBA R package (github.com/jab
bamodel/JABBA) to Stock Synthesis output files and implemented as the 
plotting function ss3diags::SSplotJABBAres(), which provides the option 
to specify the type of data input. 

Overall, the SMA joint-index residual plot indicated a good fit to the 
CPUE data with the RMSE around 30 % (Fig. 3; Winker et al., 2018). The 
boxes were small over time, except for the last year of CPUE data, 2015 
(Fig. 3a). A loess-smoother indicated there appeared to be increased 
variability in the residuals of model fit to CPUE over time. Fit to the 
acoustic index in the HAKE model (Fig. 3b) included the estimation of an 

Fig. 2. Available temporal coverage and sources of catch, relative abundance, length-composition, and conditional age-at-length composition data used in the North 
Atlantic shortfin mako (SMA) model (left panel) and Pacific hake (HAKE) model (right panel) in Stock Synthesis. *CPUE_2 (US longline observer index) was not fitted 
by assigning zero weight to the SMA model’s likelihood. 
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additional variance parameter, which resulted in relatively low preci
sion (RMSE = 34.2 %). The RMSE for the joint residuals of the mean 
length estimates for SMA (Fig. 3c) and mean age for HAKE (Fig. 3d) were 
similar at around 7%. Observed mean age for HAKE indicated occasional 
conflicts between fisheries and survey data in 1998 and 2011 (Fig. 3d). 

We developed the function ss3diags::SSplotRunstest() to visually 
denote passing (green) and failing (red) residual runs tests as judged by 
the p-values computed for each series (Carvalho et al., 2017), which can 
be applied to abundance index, mean-length residuals, and mean-age 
residuals by specifying the data type in the function. 

There was no evidence (p ≥ 0.05) to reject the hypothesis of 
randomly distributed residuals for all CPUE time series fit in the SMA 
model (Table 1; Fig. 4). Only the last data point of CPUE 3, which fell 
outside the three-sigma limit, may warrant additional evaluation of its 
influence on the final year’s estimated stock abundance trend. The runs 
tests applied to the mean-length estimates from the five fishing fleets 
showed that only the mean-length residuals for Fishery 2 failed due to 
positive residuals over sequential years between 2002 and 2011 
(Fig. 4d). 

For HAKE, the residual series for the acoustic survey and the mean- 
age residuals for both the survey and the fishery passed the runs tests 
(Fig. 5). The early period 1975–1990 showed several larger residuals 
that fell outside the three-sigma limit for expected mean ages from the 
fishery (Fig. 5a). Time-varying selectivity is modeled only from 1991 
onward leading to smaller residuals in mean ages for that later period. 
Considering that the sequence of these larger residuals are limited to the 
early years of the time series and appear to follow a random pattern, 
these outliers are likely to have little influence on the stock status esti
mates. By contrast, a sequence of positive or negative residuals falling 
outside the three-sigma limit would indicate potential model 
misspecification. 

3.2. Model consistency 

3.2.1. R0 profile diagnostic 
The R0 likelihood component profiles for the SMA and HAKE models 

(Fig. 6) were developed using the function r4ss:SS_profile() (see 
https://github.com/jabbamodel/ss3diags for example R code). 

For the SMA model, the gradient of the likelihood profile for the 
penalty on the recruitment deviations was greater than other data 
sources. The second strongest gradient in the log-likelihood profile was 
observed for the CPUE indices (Fig. 6a). The gradient of the likelihood 
profile supported by the length-composition data is lower than those 
supported by the penalty for the recruitment deviates and CPUE indices. 
Therefore, the length-composition data are the least informative data for 
the estimation of R0. The minimum value along the R0 profile for the 
penalty on the recruitment deviates was close to those from the CPUE 
data, which indicated no major conflict between these two likelihood 
components. On the other hand, the length-composition data showed a 
much higher minimum value along the R0 profile compared to the other 
data sources. Among the CPUE indices, there was a relatively large 
change in the contribution to the likelihood over the profile from two of 
the time series, CPUE 1 and 5 (Fig. 6c). However, a difference in the 
minimum value along the R0 profile was identified between these two 
indices, while a minimum value was not found for the other CPUE 
indices. Among the length-composition data, Fisheries 1 and 4 showed 
large changes in the contribution to the likelihood over the profile 
(Fig. 6e), with Fishery 1 showing a difference in the minimum value 
along the R0 profile when compared to the other fisheries. These dif
ferences in the log-likelihood support of the minimum value indicate 
that there was also conflict among individual CPUE indices and length- 
composition data on the estimation of R0, indicating that the maximum 
likelihood estimate of R0 is somewhat balancing conflicting signals from 
multiple data sources. 

Fig. 3. Joint residual plots for (a) multiple 
CPUE fits from different fishing fleets from the 
North Atlantic shortfin mako (SMA) model 
color-coded by index and (b) a single acoustic 
survey abundance index from the Pacific hake 
(HAKE) model, (c) annual mean length esti
mates for multiple fishing fleets from the SMA 
model and (d) annual mean age estimates for 
surveys and the fishery from the HAKE model. 
Vertical lines with points show the residuals (in 
colors by index), and solid black lines show 
loess smoother through all residuals. Boxplots 
indicate the median and quantiles in cases 
where residuals from the multiple indices are 
available for any given year. Root-mean 
squared errors (RMSE) are included in the 
upper right-hand corner of each plot.   
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The age-composition data were more informative than the survey 
index for R0 in the HAKE model (Fig. 6b). The log-likelihood profile for 
the penalty on the recruitment deviates attained a minimum at the upper 
R0 range, which was opposite to the minimum in the log-likelihood 
profile for the age-composition data. Therefore, the resulting total log- 
likelihood profile could be interpreted as a trade-off between the 
recruitment penalty and achieving a good fit to the age-composition 
data. In the HAKE model, the recruitment standard deviation is fixed 
at 1.4, a relatively high value. This value was chosen to achieve con
sistency with the observed variability in the time series of recruitment 
deviation estimates (Grandin et al., 2020). Albeit of limited influence, 
the log-likelihood profile for the survey index appears to corroborate the 
total log-likelihood profile (Fig. 6d). Individual profiles for the 
age-composition data sources indicated no apparent conflicts between 
the survey and the fishery data. The age-composition time series for the 
fishery (1975–2019) is more informative about R0 than the shorter 
survey age-composition data (Fig. 6f), even though the survey data are 
weighted higher by the estimated Dirichlet-Multinomial parameters. 

3.2.2. ASPM diagnostic 
We used the following workflow to compute the ASPM diagnostic 

(Minte-Vera et al., 2017; see github.com/jabbamodel/ss3diags for 
example R code): (1) run the integrated Stock Synthesis model, (2) fix 

the selectivity parameters at the maximum likelihood estimates (MLEs), 
(3) turn off estimation of all parameters except R0 and the parameters 
representing the initial conditions (e.g., recruitment offset for the first 
time step of the model and initial fishing mortality parameters), (4) set 
the recruitment (and the initial age structure) deviates to zero (adjusting 
the bias-correction factor appropriately, see Methot and Taylor, 2011), 
and (5) fit the model to the indices of abundance only. Additionally, the 
model is run as for the ASPM but with recruitment deviates estimated 
(ASPMdev). Trends in relative SSB were then compared between the 
fully integrated stock assessment model, ASPM, and ASPMdev. Maunder 
et al. (2020) provide a flow chart to assign reliability weights to models 
based on combining the R0 profile and the ASPM diagnostics. 

The CPUE 1 index for the SMA model represented the longest CPUE 
time series in the model and was associated with the smallest RMSE of 
11 % of all indices. The ASPM fit to CPUE 1 showed a consistent 
declining trend over time and an RMSE of 19.7 %. In contrast, the fit to 
the same index in the fully integrated SMA and ASPMdev (RMSE = 10.2 
%) models were similar and were both associated with a more oscilla
tory pattern (Fig. 7a). All three models estimated similar trends for SSB. 
However, the SSB from ASPM was higher than SSB from the fully inte
grated model and ASPMdev (Fig. 7c). The differences between the CPUE 
fits from the fully integrated model and the ASPM for SMA are explained 
by the estimated recruitment deviations in the fully integrated model. 
The recruitment deviations allow for variability in age-0 recruitment 
and can be interpreted as the process error necessary to fit the observed 
trends in the CPUE data (Fig. 7e). By applying the ASPM diagnostic, it 
was possible to conclude that for SMA, the variability in recruitment 
must be taken into account to estimate both the trends in CPUE 1 and the 
absolute scaling of SSB. The ASPMdev indicated that the CPUE data and 
the catches contained information on temporal variability on 
recruitment. 

For the HAKE model, the pattern in survey CPUE fit differed between 
the fully integrated model and ASPM (Fig. 7), resulting in RMSEs of 34.2 
% and 39.4 %, respectively. The ASPM showed a decline at the begin
ning of the time series, followed by an increase and a flat trend over the 
most recent period that ends with a sharp decline in the last two years 
(Fig. 7b) that is likely due to the lack of information in the survey on 
young age classes. The ASPMdev had an RMSE of 0.3 % and fit the 
observed values almost perfectly, suggesting that the ASPMdev is 
overfitted. ASPM and ASPMdev estimates of SSB follow a different 
pattern from the fully integrated model, especially from the beginning of 
the time series to the early 1990s (Fig. 7d), suggesting that the popu
lation dynamics of HAKE are strongly driven by variation in recruit
ment. Yet, the highly inflated 95 % confidence intervals for the 
recruitment deviations estimates by the ASPMdev indicate that it is not 
possible to estimate recruitment deviations for HAKE without the age- 
composition data (Fig. 7f). 

3.2.3. Retrospective analysis 
The retrospective analysis was implemented in Stock Synthesis uti

lizing R and functions available in r4ss (see github.com/jabbamodel/ 
ss3diags for example R code). The retrospective patterns were visualized 
using the function ss3diags::SSplotRetro(), which also routinely com
putes ρM and provides the option to illustrate hindcasts with one step 
ahead forecasts of SSB and to compute the associated forecast bias ρF. 
The retrospective diagnostic was implemented here for the SMA and 
HAKE models by sequentially eliminating the five and seven most recent 
years of data from the full stock assessment model, respectively. Miller 
and Legault (2017) found that estimates of ρM typically stabilized after 
five peels. For hake, the longer seven-year data peel was chosen to ac
count for the bi-yearly survey index and age-composition updates. 

For the SMA model, there was a consistently positive but small 
retrospective bias (Fig. 8a-c), with ρM = 0.06, falling well within the 
acceptable thresholds for long-lived species (Carvalho et al., 2017; 
Hurtado-Ferro et al., 2015). For the HAKE model, trends and scale in SSB 
were similar through the retrospective years (Fig. 8b). The small ρM of 

Table 1 
Summary statistics runs tests, retrospective analysis, retrospective forecasts, and 
hindcast cross-validation (HCxval) model diagnostics applied to the (a) North 
Atlantic shortfin mako (SMA) and (b) the Pacific hake (HAKE) Stock Synthesis 
models, where n denotes the number of observations to compute of the statistics.  

Diagnostic Quantity Statistic Value n 

a) SMA 
Runs Test CPUE 1 p-value 0.069 30 
Runs Test CPUE 2* p-value 0.717 24 
Runs Test CPUE 3 p-value 0.229 22 
Runs Test CPUE 4 p-value 0.406 17 
Runs Test CPUE 5 p-value 0.065 26 
Runs Test CPUE 6 p-value 0.87 9 
Runs Test Mean Length 1 p-value 0.127 16 
Runs Test Mean Length 2 p-value 0.04 13 
Runs Test Mean Length 3 p-value 0.331 5 
Runs Test Mean Length 4 p-value 0.806 22 
Runs Test Mean Length 5 p-value 0.159 4 
Retrospective analysis SSB Mohn’s Rho 0.059 5 
Retrospective forecasts SSB Forecast 

bias 
0.061 5 

HCxval CPUE 1 MASE 0.891 5 
HCxval CPUE 2* MASE 0.862 5 
HCxval CPUE 3 MASE 0.463 5 
HCxval CPUE 4 MASE 0.936 5 
HCxval CPUE 5 MASE 0.763 5 
HCxval CPUE 6 MASE 0.534 5 
HCxval Mean Length 1 MASE 0.927 5 
HCxval Mean Length 2 MASE 0.650 4 
HCxval Mean Length 3 MASE 0.359 1 
HCxval Mean Length 4 MASE 0.636 5 
HCxval Mean Length 5 MASE 3.271 2 
b) HAKE 
Runs Test Survey Index p-value 0.96 13 
Runs Test Survey mean 

age 
p-value 0.093 13 

Runs Test Fishery mean 
age 

p-value 0.234 45 

Retrospective analysis SSB Mohn’s Rho − 0.038 7 
Retrospective forecasts SSB Forecast 

bias 
− 0.051 7 

HCxval Survey Index MASE 1.065 4 
HCxval Survey mean 

age 
MASE 0.356 4 

HCxval Fishery mean 
age 

MASE 0.632 7  

* CPUE 2 represents a subset of longline fleet observer data for the logbook 
based CPUE 1 index and was not used to fit the model (zero weight). 
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-0.04 for SSB and a random retrospective pattern indicates a consistently 
behaved model as sequential years of data are removed (Fig. 8d). For 
both the SMA and HAKE models, the one year forward projections of SSB 
are consistent with the estimated trend in reference models (Fig. 8). This 
also illustrates how the conventional retrospective procedure can be 
conceptually extended to hindcasting by implementing the additional 
step of a forecast (Legault and Brooks 2016). Here, the forecast bias ρF 
remained stable at 0.06 for SMA (Fig. 8c) and showed only a very slight 
increase to ρF = − 0.05 when compared to the retrospective bias of ρM =

-0.04 for HAKE (Fig. 8d). We suggest that extending the conventional 
retrospective analysis by retrospective forecasts can be a useful tool 
when verifying that the modeled quantities are not only historically 
stable (i.e., retrospective ρM) but at the same time consistent between 
forward projections and subsequent updates with newly available data 
(i.e., retro forecasts ρF). 

Both ρM and ρF are measures of an average bias across the years 
under evaluation. As such, they can lead to situations where large 
relative errors for individual years could cancel each other out, resulting 
in seemingly acceptable retrospective and forecast bias values, respec
tively. Therefore, we recommend checking if the retrospective peels and 
retrospective forecasts fall within the estimated 95 % confidence limits 
from the reference run. Here, this is the case for both SMA and HAKE, 
which confirms that the errors in SSB estimates resulting from additional 
years of data being removed or added to the models are consistent with 

estimated uncertainty. 

3.3. Prediction skill: hindcast cross-validation 

Implementing the HCxval diagnostic in Stock Synthesis required 
using the outputs produced for the retrospective routine generated by 
r4ss (see retrospective analysis section). The forecasts are based on the 
settings in ‘forecast.ss’, which are also evoked when conducting future 
projections with the same model, only that the observed catches are used 
for the retrospective forecasts. A desirable feature of Stock Synthesis is 
that the software also computes the expected values of the observational 
data (e.g., abundance indices, length- or age-composition data) based on 
the forward-projections of the numbers- and catch-at-age matrices. 
Therefore, there are no additional computationally intensive tasks 
needed if HCxval is conducted in conjunction with retrospective anal
ysis. ss3diags::SSplotHCxval() produces novel HCxval diagnostic plots 
and computes the MASE scores for all indices of relative abundance, 
mean lengths, and mean ages, including observations that fall within the 
hindcasting evaluation period. To compute the observed forecasted 
mean lengths or mean ages from the composition data, we provide 
ss3diags::SSretroComps(), which builds on the function r4ss::SScomp
sTA1.8() to derive expected mean length and age based on the algo
rithms proposed by Francis (2011). 

In the SMA model, all five fitted CPUE indices included at least one 

Fig. 4. Runs tests results illustrated for three 
catch-per-unit-effort (CPUE) fits (left panel: a, c, 
e) and three mean lengths of size composition 
data (right panel: b, d, f) from the North Atlantic 
shortfin mako (SMA) model. Green shading in
dicates no evidence (p ≥ 0.05) and red shading 
evidence (p < 0.05) to reject the hypothesis of a 
randomly distributed time-series of residuals, 
respectively. The shaded (green/red) area spans 
three residual standard deviations to either side 
from zero, and the red points outside of the 
shading violate the ‘three-sigma limit’ for that 
series. The complete set of runs test results is 
presented in Table 1.   
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observation that fell within the hindcast evaluation period 2010–2015 
(Fig. 9). MASE scores < 1 indicated that the SMA model had a superior 
prediction skill than the naïve baseline forecast for all CPUE indices 
(Fig. 9a, c, e). The most accurate predictions were observed for CPUE 1 
with a prediction residual MAE of 0.09. However, CPUE 1 also showed 
the least inter-annual variation among observations, associated with a 
small baseline MAE for the naïve predictions. Despite a higher 

prediction residual MAE of 0.130, the MASE score of CPUE 5 was slightly 
better than CPUE 1. In other words, less variable and thus more infor
mative CPUE indices require higher prediction accuracy than noisy and 
less influential CPUE indices to ’pass’ with a MASE < 1. Although the 
log-likelihood profile (Fig. 6) and ASPM diagnostics (Fig. 7) revealed 
that stock abundance was mostly informed by the CPUE data, the SMA 
model also indicated reasonably good prediction skill (MASE < 1) for 
mean lengths of four of the five fisheries (Fig. 9b, d, f). The only 
exception was Fishery 5 (MASE = 3.27), which comprised only four data 
points, of which two fell within the hindcasting horizon of the terminal 5 
years. 

In the HAKE model, the log-likelihood profile and ASPM diagnostics 
suggested that stock abundance trends and scale are predominantly 
informed by the age-composition data, but also indicated that the scale 
of SSB is sensitive to the assumption made for the penalty on the 
recruitment deviations. The MASE scores < 1 indicated an adequate 
prediction skill for the corresponding mean age estimates (Fig. 10). The 
mean-age estimates from the acoustic survey (MASE = 0.36) and the 
fishery (MASE = 0.63) can be seen as important data sources for vali
dating that the HAKE model is consistent with the observed mean ages in 
retrospect (Fig. 10b-c). In contrast, the survey CPUE had a MASE score of 
1.06, which suggests that the model’s prediction skill for the bi-yearly 
survey index was low compared to the mean age estimates (Fig. 10a) 

3.4. Convergence 

The jitter test for global convergence was implemented in Stock 
Synthesis, utilizing the jitter feature described in detail within the Stock 
Synthesis manual (e.g., for version 3.30.15 see Methot et al., 2020). The 
jitter feature is implemented in R using a function in the r4ss package 
(see https://github.com/jabbamodel/ss3diags for example R code). 

The final gradient of the SMA model was relatively small (e.g., <
1.00E-04), and the Hessian matrix for the parameter estimates was 
positive definite. Examination of parameter estimates indicated that 
some selectivity parameters were near their bounds, however, no pa
rameters were estimated outside the reasonable minimum and 
maximum correlation thresholds (0.95 and 0.01, respectively). The 200 
iterations of the jitter test for the SMA model (Fig. 11) resulted in 131 
model runs that failed to converge, 44 model runs that converged at or 
close to the total likelihood estimate value of the base case model run 
(77 likelihood units), and five model runs with total likelihood values 
higher than 80. This demonstrates that the jittered model was sensitive 
to the initial values of the parameters. The specification of both bounds 
and priors on individual parameters, together with penalties, weights on 
associated likelihoods, and high correlations among parameters can all 
affect jitter convergence. Given that all converged model runs imple
mented within the jitter test resulted in total likelihood values equal to 
or greater than the base model, the jitter test did not provide evidence to 
reject the hypothesis that the base model parameter optimization 
converged to the global solution. 

For the HAKE model, none of the estimated parameter values in the 
base case model were close to their specified bounds. The final gradient 
of the model was < 1.00E-04, and the Hessian matrix for the parameter 
estimates was positive definite. All of the 200 jitter model runs 
converged, with 196 model runs at the total negative likelihood estimate 
value of the base case model run (682 likelihood units), and 4 model 
runs had larger total negative likelihood values (Fig. 11). The jittered 
model was robust to initial values of the parameters and gave no evi
dence that the base case model converged to at local minimum of the 
objective function instead of the global minimum. 

4. Discussion 

Just like all models are wrong, but some are useful, it equally holds 
that all models are somewhat misspecified when fitting to empirical data 
(Francis, 2011; Maunder and Piner, 2017). By recognizing that it is 

Fig. 5. Runs tests results for fits to (a) the acoustic biomass survey index and 
(b) annual mean age estimates for the survey, and (c) the fishery from the 
Pacific Hake (HAKE) model. Green shading indicates no evidence (p ≥ 0.05) 
and red shading evidence (p < 0.05) to reject the hypothesis of a randomly 
distributed time-series of residuals, respectively. The shaded (green/red) area 
spans three residual standard deviations to either side from zero, and the red 
points outside of the shading violate the ‘three-sigma limit’ for that series. The 
complete set of runs test results is presented in Table 1. 
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impossible to avoid some degree of model misspecification due to 
complexity and heterogeneity in the interplay between population dy
namics and fisheries operation, we can start seeing a stock assessment 
for what it should be, a consistently evolving process to identify and 
improve models such that they are useful and provide more robust 
advice than others. First, we must ensure models converge adequately 
and best fit the data from a set of candidate models, and second, models 
must be validated before being used to forecast management advice. 

In this paper, we demonstrate the application of contemporary 
model diagnostics ranging from convergence checks to model-free 
validation. The model diagnostics proposed here provide a set of tools 
to lay out the evidence in support of or against the candidate model(s) 
under consideration. Importantly, model diagnostics should enable the 
stock assessment analyst to lay out the main remaining concerns trans
parently. Addressing the remaining concerns may not always be feasible 
in the short term and may require improving the input data, revision of 
model structure, adding priors, and turning off estimation for poorly- 
informed parameters (i.e., regularization; Monnahan et al., 2019) or 

exploring sources of process error not included in the model (Walters 
et al., 2008). 

In our proposed process, we first create a hypothesis and configure 
the model, including all the information known for that stock. The first 
stage of the flow chart evaluates model convergence. Some stock 
assessment models have thousands of parameters, so it is expected that 
some will have relatively high gradients (e.g., > 1.00E-04), and some 
may be correlated. If this is the case, it is important first to identify 
which parameters have a high gradient and if there are correlations of 
potentially influential model parameters (e.g., between selectivity and 
growth) and then try to adjust from there. If a parameter has a high 
gradient or is highly correlated with other parameters, then fixing the 
parameter, using more informative priors, or loosening the bounds may 
form part of a necessary detour to investigate model properties. When 
examining model convergence problems, it is also important to deter
mine if any specific data component(s) is causing the issues by 
inspecting the likelihood profile. Down-weighting or removing a data 
component can be considered for the final model if either of these 

Fig. 6. Log-likelihood profiles for R0 for the various data components included in the North Atlantic shortfin mako (SMA; left panels) and Pacific hake (HAKE; right 
panels) Stock Synthesis models, showing the contribution of (a) - (b) all data likelihood components, (c) - (d) among abundance indices and (e) - (f) among length- 
and age-composition data, respectively. 
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options improves model convergence. If the initial runs produce mean
ingful results, we recommend checking the model fits and associated 
residual pattern as the second readily available diagnostic. There is little 
justification to ignore the evidence for poor fits to the data and non- 
random residual patterns by proceeding any further without first tak
ing a detour. Lack of fit can be a sign of misspecification and an indi
cation that an inappropriate model structure has been used. If the 
analyst decides to take a detour, initial explorations could include 
alternative parameterizations of key population dynamics processes, 
such as somatic growth or the spawning-recruitment relationship 
(Henríquez et al., 2016; Minte-Vera et al., 2017; Punt and Cope, 2019); 
adjusting the weight of the different data components in the likelihood 
(Francis, 2011; Wang et al., 2015); adding process complexity (e.g., 
time-varying selectivity (Stewart and Monnahan, 2017)) and 
time-varying catchability (Wilberg et al., 2009); regime shifts in 
recruitment (Haltuch and Punt, 2011; Johnson et al., 2016); or spatial 
structure (Goethel et al., 2011). It could be argued that, ideally, jitter 
runs should also be conducted at the beginning and during the model 
development process. However, in practice, time does not always allow 
to run this time-intensive diagnostic. Instead, users tend to verify model 
convergence because convergence will likely indicate no significant 

problems in a reasonably well-configured model. Thus, considering the 
jitter diagnostic’s relatively long run times, we propose to reserve jitter 
diagnostic as the last step in the iterative model diagnostic process. 

The R0 profile has been widely used to identify data conflicts (Lee 
et al., 2014; Wang et al., 2015). Although R0 is likely the most common 
parameter profiled over, the likelihood profile can also be a valuable 
diagnostic for any other estimable model parameter. Particularly, in 
cases where notoriously challenging parameters, such as natural mor
tality or the steepness of the spawning recruitment function, are esti
mated within the integrated model, the likelihood profile diagnostic is 
recommended to evaluate which data components are informative 
relative to the influence of the typically imposed priors or penalties. 
Even if parameters such as natural mortality or steepness are fixed, 
doing a likelihood profile of those parameters is still very useful, 
particularly, to measure the amount of information contained in the data 
and sensitivity (i.e., the consequences of using a fixed value) of the 
model results to the choice of those parameters. The difficulty with data 
conflicts arises because the source of the conflict may be an unknown 
misspecified process. In case the analyst decides to take a detour after 
inspecting the results from the R0 profile, two options can be considered 
for further exploration; 1) eliminate or down-weight data, and 2) 

Fig. 7. Comparison between the fully integrated base-case and the deterministic Age-Structured-Production Model (ASPM) results for North Atlantic shortfin mako 
(SMA; left panels) and Pacific hake (HAKE; right panels), showing observed and predicted values for (a) the CPUE 1 index for SMA and (b) Survey index for HAKE, (c) 
– (d) spawning stock biomass trajectories relative to levels at MSY (SSB/SSBMSY) and (e) – (f) recruitment deviation estimates. 
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include additional processes within the model structure (Wang and 
Maunder, 2017). However, any post-hoc approach for reweighting the 
data is unlikely to solve misspecification problems. It is important to 
note that exploring different weighting methods might produce different 
results, which can be biased in unknown ways because the model is still 
misspecified (Sharma et al., 2014). 

In many cases, the fisheries-dependent input data are sampled in a 
biased way and are therefore not representative of the process they are 
meant to measure. A well-documented example is using non- or 
improperly standardized CPUE as a potentially biased index of abun
dance (Maunder and Punt, 2004). In addition to data processing, mis
reporting of catches, discards, or size composition data can commonly 
introduce data conflicts in stock assessment models. Therefore, it may be 
warranted to carefully re-evaluate the quality of input data to inform 
decisions on down-weighting or ultimately eliminate selected data 
sources. Alternatively, if the model misspecification includes models 
that are too simple to include the real complex processes that generated 
some of the data, changes to the model structure or temporal variation in 
model parameters can be modeled explicitly and help reduce or elimi
nate data conflict. 

The ASPM diagnostic can evaluate data conflicts in information 
related to absolute abundance and abundance trends and detect mis
specification in the population dynamics (e.g., steepness or natural 
mortality). It is important to find out early in the model construction 
process whether or not fishing affects the population (i.e., if the catches 
relative to surplus production caused observed trends in abundance). If, 
after inspecting the ASPM results, the analyst concludes that the model 
results strongly diverge from the expected changes in abundance given 

the catch (i.e., fishing does not affect the population), a detour is rec
ommended to explore if the model is possibly misspecified or if there is 
evidence that stock dynamics are strongly driven by variations in 
recruitment (Minte-Vera et al., 2017). Based on the results of the detour, 
the analyst may consider developing an alternative model structure that 
does not rely on the catch and index to scale the model. Without finding 
an index that can inform the model about the absolute scale, the analyst 
needs to develop an alternative model that mimics a catch-curve anal
ysis (i.e., fitting the model only to catch-composition data). A key 
component of such a model involves identifying which fleet or survey 
can provide the most information about the stock’s productivity, which 
is needed to scale the model. 

After advancing from the R0 profile and ASPM diagnostics, the an
alyst reaches the diagnostics that provide insights about the invariance 
in important modeled quantities (e.g., SSB) by first looking into the 
rearview mirror with retrospective analysis (Hurtado-Ferro et al., 2015) 
and then evaluating the model’s ability to forecast into the future by way 
of hindcasting cross-validation (Kell et al., 2016; Kell et al., 2021). Both 
diagnostics are useful to reveal systematic bias in the model estimation. 
Given that the variability in the retrospective bias, ρM depends on life 
history and that the statistic appears insensitive to the magnitude of F, 
Hurtado-Ferro et al. (2015) proposed a rule of thumb when determining 
whether a retrospective pattern should be addressed explicitly. How
ever, ρM values smaller than those proposed should not be taken as 
confirmation that a given assessment does not present a retrospective 
pattern, as the choice of 90 % means that a ’false positive’ can arise 10 % 
of the time. Retrospective analysis is widely used worldwide as a key 
diagnostic, and in Europe, it is often the key diagnostic for accepting or 

Fig. 8. Retrospective analysis of spawning stock 
biomass (SSB) estimates for North Atlantic 
shortfin mako (SMA; left panels) and Pacific 
hake (HAKE; right panels) models conducted by 
re-fitting the reference model (Ref) after 
removing five years of observations for SMA and 
seven years for HAKE, one year at a time 
sequentially. The retrospective results are 
shown for (a) – (b) the entire time series and (c) 
– (d) for the most recent years only. Mohn’s rho 
statistic and the corresponding ‘hindcast rho’ 
values (in brackets) are printed at the top of the 
panels in (c) – (d). One-year-ahead projections 
denoted by color-coded dashed lines with ter
minal points are shown for each model. Grey 
shaded areas are the 95 % confidence intervals 
from the reference model.   
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rejecting a model (ICES, 2019). A strong retrospective pattern indicates 
a problem with historical fits to data. The sources of a retrospective 
pattern can be anywhere in the time series. Therefore, when opting for a 
detour after inspecting the retrospective analysis results, it is recom
mended to explore alternative biology and fishery hypotheses. A closer 
inspection of the recruitment residuals is also advised, as retrospective 
patterns can be linked to the model’s inability to capture components of 
the state-dependent dynamics of the ecosystem that appear to force the 
stock-recruitment relationship. However, simulation testing shows that 
data or model inconsistency may not always produce a retrospective 
pattern (Carvalho et al., 2017). This highlights the need of using hind
casting with cross-validation of observations to estimate prediction skill 
in combination with retrospective analysis, and why it should be 
routinely used as a diagnostic tool to evaluate the ability of a model to 
provide advice on future catches. 

Model convergence, evaluating how well the model fits data, iden
tifying data-conflicts, and evaluating model consistency in terms of 
retrospective and forecast bias have received much attention in fisheries 
science over the past decade. However, compared to other disciplines, 
such as oceanography and climate research, where model validation is 
an important prerequisite (e.g., Barnston et al., 2019; Keenlyside et al., 
2008; Smith et al., 2010), key aspects of model validation have been 
mainly overlooked in fisheries science. Extending the stock assessment 
model diagnostic toolbox by including hindcast cross-validation 

techniques is building a bridge between current best practices in fish
eries to what is already best practice in energy, oceanography, and 
climate research. This will ultimately increase confidence in the 
model-based scientific advice by stakeholders, managers, and 
policymakers. 

The conceptual flow chart (Fig. 1) lays out a generic process of model 
development and selection using the presented model diagnostics. Based 
on this, we propose the following four properties as objective criteria for 
evaluating the plausibility of a model: (1) model convergence, (2) fit to 
the data, (3) model consistency, and (4) prediction skill. We recommend 
that none of these diagnostic criteria be interpreted in isolation or used 
as a definitive metric to accept or reject a model. For example, the an
alyst needs to decide whether the optimization was successful, the 
model fits the data, if the estimates are consistent when updated with 
new data (e.g., retrospective pattern), and if the model is not overfitted 
and able to make future predictions. These criteria are generic and, in 
principle, transferrable to any stock assessment model that provides an 
option for a forecast (Kell et al., 2021). For example, residuals run tests, 
retrospective analysis, and hindcast cross-validation are also available in 
the Bayesian state-space surplus production model ‘JABBA’ (Winker 
et al., 2018). In addition, stock specific plausibility criteria should be 
considered to evaluate if the assessment results are consistent with prior 
knowledge about the exploitation history and population biology 
(Maunder et al., 2020; Sharma et al., 2020; Thorson, 2020). 

Fig. 9. Hindcasting cross-validation (HCxval) 
results for three catch-per-unit-effort (CPUE) fits 
(left panel: a, c, e) and three mean lengths of size 
composition data (right panel: b, d, f) from the 
North Atlantic shortfin mako (SMA) model, 
showing observed (large points connected with 
dashed line), fitted (solid lines) and one-year- 
ahead forecast values (small terminal points). 
HCxval was performed using one reference 
model (Ref) and five hindcast model runs (solid 
lines) relative to the expected catch-per-unit- 
effort (CPUE). The observations used for cross- 
validation are highlighted as color-coded solid 
circles with associated 95 % confidence intervals 
(light-gray shading). The model reference year 
refers to the endpoints of each one-year-ahead 
forecast and the corresponding observation (i. 
e., year of peel + 1). The mean absolute scaled 
error (MASE) score associated with each CPUE 
and size composition time series is denoted in 
each panel.   
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These four criteria are not limited to selecting a single base-case 
model but could also be used for objectively assigning weights to an 
ensemble of models (Maunder et al., 2020). They can also be of value in 
the process of developing Management Strategy Evaluation (MSE) 

frameworks, where integrated models are commonly used for condi
tioning Operating Models (OMs) to evaluate the performance of harvest 
control rules (Butterworth and Punt, 1999; Punt et al., 2015; Sharma 
et al., 2020). This often involves modelling the resource dynamics by 
fitting integrated assessment models to the available data based on some 
statistical criterion, such as a maximum likelihood (Hillary et al., 2015). 
The aim of conditioning is to discard OMs that do not fit the data 
satisfactorily and are consequently inconsistent with the observations 
and, therefore, implausible (Punt et al., 2015). So, when conditioning 
OMs, the intention is not to find a “best assessment” but a limited set of 
OMs with high plausibility (Sharma et al., 2020), which includes the 
most important uncertainties in the model structure, parameters, and 
data (Butterworth and Punt, 1999; Punt et al., 2015). The proposed 
plausibility criteria may be evaluated formally based on selected model 
diagnostic tests included in the toolbox and then ideally combined with 
expert judgment (e.g., Maunder et al., 2020) to weight performance 
statistics when integrating over results for different OMs or across a 
model ensemble. 

The diagnostic toolbox presented here includes several promising, 
contemporary model diagnostic approaches, but these are far from 
exhaustive. Applications of Monte-Carlo Markov Chain (MCMC) ap
proaches as model diagnostic tools have been rapidly evolving, in 
particular the process of “regularizing” of parameter penalties and priors 
in stock assessment models (i.e., to check that all parameters are iden
tifiable; Monnahan et al., 2019) and posterior predictive checks and 
associated p values, which have become a standard approach for eval
uating the goodness of fit for Bayesian models (Conn et al., 2018). One of 
their advantages is that different discrepancy measures can be used to 
check different components of the model, which is particularly useful for 
integrated models that use multiple data sets of various types. In pos
terior predictive checks, a potential challenge for stock assessment 
models is that this diagnostic can be conservative and, therefore, not 
overly sensitive to model misspecification (Conn et al., 2018). Also, 
contemporary integrated stock assessment models are complex and 
highly parameterized, and Bayesian inference is often not possible or 
impractical due to long computer processing time. Besbeas and Morgan 
(2014) developed a non-Bayesian approach based on posterior predic
tive checks that sample the model parameters from a multivariate 
normal distribution using the MLEs and variance-covariance matrix of 
the parameter estimates to sample the model parameters for simulating 
the data rather than sampling from the posterior distribution. Further 
work is needed to improve these methods so that they are practical for 
stock assessment models and are better at detecting and identifying 
model misspecification. 

One approach to further evaluate the sensitivity and specificity of 
diagnostic tests would be to take a broad set of peer-reviewed stock 
assessments (e.g., all those implemented in Stock Synthesis and accepted 
for management advice through an independent review system) and use 
them as simulators to test a set of diagnostics under both correctly 
specified models and misspecified models. The misspecifications should 
include fixed parameter values (e.g., natural mortality, steepness), 
model structure (e.g., form of the selectivity curve), process variation 
(random and systematic), likelihood functions (e.g., size of the variance 
parameter, the structure of the likelihood function), observation models 
(e.g., non-proportionality between the index of abundance and popu
lation size, selectivity function) and other relevant aspects of the model. 
The results of this analysis could then be analyzed to determine which 
diagnostics detect which type of model misspecification, whether there 
are specifics of a diagnostic that can be associated with model mis
specification, and whether combinations of diagnostics are associated 
with specific misspecifications. 

Integrated models linking all data components via the estimated 
dynamics are both a blessing and a curse, as problems fitting to any 
particular data component may not necessarily result from a mis
specified process directly linked to that component. The next generation 
of stock assessment models is likely to incorporate even more data types 

Fig. 10. Hindcasting cross-validation (HCxval) results for the fits to (a) the 
acoustic biomass survey index, and (b) annual mean age estimates from the 
survey, and (c) the fishery for the Pacific Hake (HAKE) model, showing 
observed (large points connected with dashed line), fitted (solid lines) and one- 
year-ahead forecast values (small terminal points). HCxval was performed using 
one reference model (Ref) and seven hindcast model runs (solid lines) relative 
to the expected survey index. The observations used for cross-validation are 
highlighted as color-coded solid circles with associated 95 % confidence in
tervals (light-gray shading). The model reference year refers to the endpoints of 
each one-year-ahead forecast and the corresponding observation (i.e., year of 
peel + 1). The mean absolute scaled error (MASE) score associated with the 
survey index and age-composition time series is denoted in each panel. 
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and complex processes than the current models (Punt et al., 2020). 
These include spatial subpopulations, interactions with other species in 
the ecosystem, and influence from oceanographic processes (Punt et al., 
2020). Problems associated with diagnosing the specific causes of poor 
model performance are likely to increase as these new complexities are 
explicitly considered. This will put even greater emphasis on the use of 
diagnostics (both existing and new) that can pinpoint the location of the 
misspecification. 

In conclusion, we recommend that the next generation of stock 
assessment models should offer a routine diagnostic toolbox, as pre
sented in this study. Automation of the toolbox across multiple oper
ating systems and stock assessment software to produce warnings when 
diagnostics fail would also greatly facilitate their application. The 
diagnostic toolbox should be used to perform a comprehensive and 
systematic evaluation of the model(s) to determine which component(s) 
is misspecified and thus guide the analyst towards modifications and 
alternative model configurations that can be explored to minimize or 
eliminate such problems before the model is used for management 
advice. 
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